
An Efficient Monte-Carlo Algorithm for Pricing
Combinatorial Prediction Markets for Tournaments

Lirong Xia∗

Department of Computer Science
Duke University

Durham, NC 27708, USA
lxia@cs.duke.edu

David M. Pennock

Yahoo! Research New York
111 West 40th Street, 17th floor

New York, NY 10018
pennockd@yahoo-inc.com

Abstract

Computing the market maker price of a security in a
combinatorial prediction market is #P-hard. We de-
vise a fully polynomial randomized approximation
scheme (FPRAS) that computes the price of any se-
curity in disjunctive normal form (DNF) within an ε
multiplicative error factor in time polynomial in 1/ε
and the size of the input, with high probability and
under reasonable assumptions. Our algorithm is a
Monte-Carlo technique based on importance sam-
pling. The algorithm can also approximately price
securities represented in conjunctive normal form
(CNF) with additive error bounds. To illustrate the
applicability of our algorithm, we show that many
securities in Yahoo!’s popular combinatorial predic-
tion market game called Predictalot can be repre-
sented by DNF formulas of polynomial size.

1 Introduction

A prediction market turns a random variable into a tradable
financial security of the form “$1 if event E happens”. If E
does happen, then agents get $1 for every share of the secu-
rity they own; if E doesn’t happen, they get nothing. The
price of the security reflects the aggregation of agents’ be-
liefs about the random event. The main goal of a predic-
tion market is to extract an informative price for the secu-
rity and thus an informative probability for the event. The
Iowa Electronic Market and Intrade are two examples of real
prediction markets with a long history of tested results [1;
2]. Chen and Pennock [7] discuss objectives for designing
good prediction mechanisms and survey a number of pro-
posed and fielded mechanisms.

In this paper, we focus on prediction markets with a central
market maker that determines prices algorithmically based on
a cost function [6]. At any time, the market maker will quote a
price for any security; agents can decide to buy or sell shares
at that price, or do nothing (“take it or leave it”). After each
(infinitessimal) trade, the market maker updates the prices.
For example, suppose there is a prediction market on a Duke
basketball game, and the current price for the security “Duke
wins” is $ 0.8. If a risk-neutral agent believes that Duke will

∗Part of this work was conducted at Yahoo! Research.

win with probability 0.9, then she has an incentive to buy
some shares of the security, because her expected profit per
share is 0.9− 0.8 = 0.1. If she buys some shares of the secu-
rity, then its price will go up; if she sells some shares (equiv-
alent to buying shares in Duke’s opponent), then its price will
go down. See Section 2 for more details.

A common cost function is Hanson’s logarithmic market
scoring rule (LMSR), studied extensively in the literature [4;
5; 8; 13; 14], and used in many practical deployments in-
cluding at Microsoft, Yahoo!, InklingMarkets, and Consen-
sus Point. Pricing securities in LMSR-based prediction mar-
kets takes time that is polynomial in the number of outcomes.
Therefore, it works well if the number of outcomes is not too
large. However, in many situations the number of outcomes
is exponentially large and has a combinatorial structure [4; 5;
10; 13; 14]. For example, in the NCAA men’s basketball tour-
nament, there are 64 teams and therefore 63matches in total to
predict. Each match can be seen as a binary variable. Hence,
the prediction market for this tournament has 263 ≈ 9.2×1018

outcomes so computing the prices by directly using the cost
function is infeasible. Pricing LMSR-based combinatorial
prediction markets is #P-hard [4]. Chen et al. [5] show that
using a Bayesian network to represent prices in a compact
way, they can compute and update the prices for a restricted
class of securities like “team A advances to round k”.

Our contribution. In this paper, we take a Monte-Carlo
approach to pricing LMSR-based combinatorial prediction
markets for tournaments. Suppose a security is represented by
a DNF formulaF . Our main contribution is a Monte-Carlo al-
gorithm (Algorithm 1) that is a fully polynomial randomized
approximation scheme (FPRAS) for pricing F , under a rea-
sonable assumption. Given any error rate ε > 0, our algorithm

outputs an estimation Î of the market price I(F) of F with the

following guarantees: (1) (1 − ε)I(F) ≤ Î ≤ (1 + ε)I(F)
with at least 3/4 probability; (2) the runtime of the algorithm
is polynomial in 1/ε and the size of F . Our algorithm is based
on importance sampling, a well-known variance-reduction
technique for Monte-Carlo methods [19]. As far as we know,
our algorithm is the first Monte-Carlo algorithm for pricing
prediction markets with a good theoretical guarantee.

Compared to Chen et al.’s [5] approach, ours works for a
much larger class of securities, as we will show in Section 7.
The tradeoff is the following two constraints. First, our algo-
rithm returns an approximation of the price, and its runtime

452

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

is determined by the error rate of the outcome and the size
of the input. Second, the algorithm is an FPRAS only if we
have a distribution that is a not-too-bad estimation for the true
prices, and under this distribution it is easy to generate true
valuations of the variables. Fortunately, for LMSR-based pre-
diction markets for tournaments we can use the pairwise win
rates between the teams to provide a reasonable estimation, as
discussed in Section 4.

Other related work in AI. Pricing LMSR-based combi-
natorial prediction markets (see Section 2.2 for definitions)
is a special case of a general version of the weighted model
counting problem. In such a problem, we are given a logical
formula F (not necessarily in DNF) and a weight w(�x) for
each valuation �x. We are asked to compute

∑
�x:F (�x)=1 w(�x).

However, in most weighted model counting problems, it is
assumed that the weight function can be represented by the
product of the individual weight functions, one for each vari-
able [3; 17]. This is not the case in LMSR-based combinato-
rial prediction markets.

Another related problem is the solution sampling prob-
lem [9; 11; 12; 20], where the objective is to generate a valua-
tion uniformly or nearly-uniformly from satisfying valuations.
Our algorithm, on the other hand, generates a valuation ac-
cording to a (not necessarily uniform or nearly-uniform) dis-
tribution. More importantly, we are not aware of any previous
work in weighted model counting or solution sampling that is
an FPRAS.

2 Preliminaries

2.1 LMSR-based Prediction Market
Let {1, . . . , N} denote the set of outcomes of a random vari-
able X . A security “X will be i” means that holding each
share of the security, the agent will receive $1 from the mar-
ket maker, if X turns out to be i. In this paper, we use a vector
�q ∈ R

N to represent how many shares the market maker has
sold for each security. That is, for every i ≤ N , the market
maker has sold �q(i) shares of “X will be i”. A cost function
based prediction market is characterized by a cost function
C : RN → R and an initial quantity �q0. The price for ε share
of “X will be i” is the marginal cost of incrementing �q by ε�ei
in C, where �ei is the N -dimensional vector whose ith com-
ponent is 1 and the other components are 0. That is, if the
agent wants to buy ε share of “X will be i”, she must pay
C(�q + ε�ei) − C(�q) to the market maker. The instantaneous
price as ε→ 0 is therefore ∂C(�q)/∂�q(i).

In this paper, we study pricing prediction market with the

cost function C(�q) = b log
∑N

i=1 e
�q(i)/b, where the parame-

ter b is called the liquidity of the market. This particular cost
function corresponds to the logarithm market scoring rule, and
we call this type of prediction markets LMSR-based predic-
tion markets. The next equation computes the instantaneous
price I�q(i) for the security “X will be i”.

I�q(i) =
∂C(�q)

∂qi
=

e�q(i)/b
∑N

j=1 e
�q(j)/b

(1)

2.2 Combinatorial Prediction Markets for
Tournaments

A tournament of 2m teams is represented by a binary tree of
2m leaves, defined as follows. We note that in this paper the

leaves are on the top of the tree (see Figure 1.)

Definition 1 The tournament of 2m teams is modeled by a
binary tree composed of 2m − 1 binary variables as follows.

For any 1 ≤ j ≤ m, let Rj = {xj
1, . . . ,x

j
2m−j} represent

matches in round j. A variable x1
i in R1 represents the match

between team T2i−1 and T2i. For any i, j, the parents of x
j
i

are x
j−1
2i−1 and x

j−1
2i . x

j
i takes 0 (respectively, 1) means that

the x
j−1
2i−1 (respectively, x

j−1
2i) branch winner wins the match

x
j
i . The set of all variables is Xm = R1 ∪ . . . ∪ Rm. An

outcome is uniquely characterized by a valuation of Xm.1

In this paper, a security is represented by a logic formula F
over Xm in disjunctive normal form (DNF). That is, F =
C1 ∨ · · · ∨ Ck, where for any j ≤ k, Cj = lj1 ∧ · · · l

j
sj , and

lji is either x or ¬x for some variable x ∈ XM . Cj is called

a clause and lji is called a literal. If F is satisfied under the
outcome of the tournament (i.e., a valuation over Xm), then
the market maker should pay the agent $1 for each share of F
the agent owns; otherwise the agent receives nothing.

Example 1 Figure 1 illustrates a tournament of four teams.
x
1
1 = 0 if T1 beats T2 in the first round; x2

1 = 1 if the win-
ner of the match x

1
2 beats the winner of the match x

1
1. The

security “T2 is the champion” can be represented by the DNF
formula (x1

1 ∧ ¬x
2
1). The valuation (011, 1

1
2, 0

2
1) corresponds

to the outcome where x1
1 = 0, x1

2 = 1, and x
2
1 = 0, where T1

is the champion. �

x21

x11 x12

T1 T2 T3 T4 The 4 teams

R1: The round 1 matches

R2: The round 2 match

Figure 1: A tournament of four teams.

By definition, the price of F is the sum of the
prices of the securities that correspond to the valua-
tions under which F is satisfied. That is, I�q(F) =
∑

�v:F (�v)=1 I�q(�v) = (
∑

�v:F (�v)=1 e
�q(�v)/b)/(

∑
�y e

�q(�y)/b). Let

N�q(F) =
∑

�v:F (�v)=1 e
�q(�v)/b and D�q(F) =

∑
�y e

�q(�y)/b. That

is, I�q(F) = N�q(F)/D�q(F).

2.3 Importance Sampling

Importance sampling is a general variance-reduction tech-
nique for Monte-Carlo methods. Suppose we want to eval-
uate the expectation of a function f : {1, . . . , N} → R when
the variable is chosen from a probability distribution π over
{1, . . . , N}. That is, we want to evaluate the expectation of f
w.r.t. π, denoted by E[f ;π]. The most straightforward Monte-
Carlo method is to generate Z samples X1, . . . , XZ i.i.d. ac-

cording to π, and use 1
Z

∑Z
i=1 f(Xi) as an unbiased estima-

tor for E[f ;π]. The convergence rate is guaranteed by the
following lemma, which follows directly from Chebyshev’s
inequality.

1We note that there are 2m − 1 variables, so that the input size is
polynomial in 2m.

453

Lemma 1 (Follows from Chebyshev’s inequality) Let
H1, . . . , HZ be i.i.d. random variables with μ = E[Hi] and
variance σ2. If Z ≥ 4σ2/(ε2μ2), then,

Pr(| 1Z
∑Z

i=1 Hi − μ| < εμ) ≥ 3/4

Importance sampling reduces the variance by generating
the outcomes that have higher f values more often. Suppose
we have another distribution π such that for every outcome i,
π(i) = 0 =⇒ f(i)π(i) = 0. We can then use π to provide
an unbiased estimator for E[f ;π] as follows. Let H denote

the random variable that takes
f(i)π(i)
π(i) with probability π(i).

We generate Z i.i.d. samples of H , denoted by H1, . . . , HZ ,

and use 1
Z

∑Z
i=1 Hi as an estimator for E[f ;π]. It is easy to

check that this estimator is also unbiased, and Var(H)/E[H]2

might be significantly smaller than Var(f)/E[f ;π]2.
A good π can greatly reduce the variance, therefore in turn

boost the Monte-Carlo method. The best scenario is that for
any outcome i, π(i) is proportional to f(i)π(i). Then, the
variance becomes 0 and we only need 1 sample. For any pair
of functions f and g defined over the same domain D, let f ·g
denote the function such that for any value x ∈ D, (f ·g)(x) =
f(x)× g(x).

Definition 2 For any c > 0, we say that a probability distri-
bution π is a c-approximation to f · π, if there exists a con-
stant d such that for any outcome i, d1

cf(i)π(i) ≤ π(i) ≤
dcf(i)π(i).

That is, π is a c-approximation to f · π if for every i ≤ N ,
π(i) is approximately proportional to f(i)π(i), up to a mul-
tiplicative factor c. In this case it is easy to check that
Var(H)/(E[H])2 ≤ c4, where H is the random variable that

takes
f(i)π(i)
π(i) with probability π(i). Hence, we have the fol-

lowing lemma, which follows directly from Lemma 1.

Lemma 2 Suppose π is a c-approximation to f · π. Let HZ

denote the estimator calculated by applying importance sam-
pling to f · π using π for Z iterations. If Z ≥ 4c4/ε2, then,

Pr(|HZ − μ| < εμ) ≥ 3/4

2.4 An FPRAS for # DNF

An algorithm A is an FPRAS for a function f , if for any input
x and any error rate ε, (1) the output of the algorithm A is in
[(1 − ε)f(x), (1 + ε)f(x)] with probability at least 3/4,2 (2)
the runtime of A is polynomial in 1/ε and the size of x.

To motivate our algorithm, we recall an FPRAS for the
#DNF problem by Karp, Luby, and Madras [15] (KLM for
short). The #DNF problem has been proven to be #P-
complete [18]. In a #DNF instance, we are given a DNF for-
mula F = C1 ∨ · · ·∨Ck over {x1, . . . ,xt}, and we are asked
to compute the number of valuations under which F = 1. Let
πu denote the uniform distribution over all valuations. The
#DNF problem is equivalent to computing 2t ·E[F ;πu].

Let us first explain why a naı̈ve Monte-Carlo method does
not work. The naı̈ve Monte-Carlo method generates Z valua-
tions i.i.d. uniformly at random, and counts how many times

2By using the median of means method, for any δ < 1, the suc-
cessful rate of an FPRAS can be increased to 1 − δ, at the cost of
increasing the runtime by a multiplicative factor of ln(δ−1) (cf. Ex-
ercise 28.1 in [19]).

F is satisfied, denoted by XZ . Clearly 2t ·XZ/Z is an unbi-
ased estimator for the solution to the #DNF instance. How-
ever, when the solution is small, Var(XZ/Z)/E[XZ/Z]2

can be exponentially large. Consequently, it might take a
long time for the naı̈ve Monte-Carlo method to converge
(Lemma 1). For example, if there is only one valuation
that satisfies F , then the variance of XZ/Z is approximately

1/2t, and the expectation of XZ/Z is 1/2t, which means that

Var(XZ/Z)/E[XZ/Z]2 is approximately 2t.
In the KLM algorithm, only the valuations under which

F = 1 are generated. We next show a slight variant of the
KLM algorithm using the uniform distribution πu, in order
to better explain its importance sampling nature under the c-
approximation argument, as well as to show its connection
with our algorithm. For any clause Cj , let Sj denote the
set of valuations that satisfy Cj . The algorithm has three
steps in each iteration. (1) Choose a clause Cj with prob-
ability πu(Sj)/(

∑
j′ πu(Sj′)); (2) then choose a valuation

�v from Sj with probability πu(�v|Sj); (3) finally, compute
the number of clauses �v satisfies, denoted by n(�v), then add
(F (�v)

∑
j πu(Sj))/(2

tπu(�v)n(�v)) to a counter K . Given a

error rate ε > 0, let Z = 4k4/ε2. After Z iterations, the algo-
rithm outputs 2tK/Z . Let π′ denote the distribution induced
by this sampling process. That is, for any valuation �v with
F (�v) = 1, π′(�v) = n(�v)/(

∑
j′ |Sj′ |). We note that for any

�v with F (�v) = 1, 1/k ≤ 1/n(�v) ≤ 1. Therefore, π′ is a
k-approximation to F · πu. By Lemma 2, this algorithm is an
FPRAS for the #DNF problem.

3 Overview of Our Algorithm

In this section, we explain the main ideas behind our algo-
rithm (Algorithm 1). Details of the sub-procedures (steps 1,4,
and 7) will be discussed in later sections.

Let F denote a DNF formula over Xm. For the same rea-
son as in the #DNF problems, the naı̈ve sampling approach
(that generates valuations i.i.d. uniformly at random) might
not work well for either N�q(F) or D�q(F). Therefore, we em-
ploy Monte-Carlo techniques for D�q(F) and N�q(F) respec-
tively. For now, suppose we have a distribution π (which will
be specified in Section 4) such that (1) π is a c-approximation
to f�q ·πu, where c is a constant,3 and (2) there is a polynomial-
time algorithm that samples a valuation according to π.

Our Monte-Carlo technique for D�q(F) is straightforward.
Given �q, let f�q be such that for any valuation �v, f�q(�v) =

e�q(�v)/b. Then, D�q(F) = 22
m

· E[f�q;πu] (we recall that πu is
the uniform distribution). We adopt the standard importance
sampling technique to estimate E[f�q;π] using π.

Our Monte-Carlo technique for N�q(F) is more compli-

cated. We note that N�q(F) = 22
m

E[F · f�q;πu]. Therefore,
π might not be a c-approximation for F · f�q · πu. Our al-
gorithm adopts the idea of the KLM algorithm by substitut-
ing the uniform distribution πu for π, and substituting F (�v)
for F (�v)f�q(�v) in the description for KLM. Again, let Sj de-
note the set of all valuations that satisfy Cj . Our algorithm
also has three steps in each iteration: (1) Choose a clause Cj

3Equivalently, π is a c-approximation to f�q or I�q .

454

with probability π(Sj)/
∑

j′ π(Sj′); (2) then choose a valua-

tion �v from Sj with probability π(�v|Sj); (3) finally, compute
the number of clauses that �v satisfies, denoted by n(�v), then

add F (�v)f�q(�v)
∑

j′ π(Sj′)/(2
2mπ(�v)n(�v)) to a counter N .

Given a error rate ε > 0, let Z = 4c4k4/ε2. After Z itera-

tions, the algorithm returns an estimator N̂ = 22
m

N/Z .

We note that so far many technical difficulties remain un-
solved. For example, we have not specified how to compute
π(Sj) efficiently (in contrast, in KLM computing πu(Sj) is
easy—it is exactly |Sj |/2

t.) We will address all the technical

difficulties in later sections.4 The framework of the algorithm
is illustrated in Algorithm 1, which computes an estimation

N̂ for N�q(F) and an estimation D̂ for D�q(F).

Algorithm 1: ApproximatePricing

Input: π, �q, ε, a DNF formula F = C1 ∨ · · · ∨Ck .
Output: Estimations for N�q(F) and D�q(F).

1 For each j ≤ k, let Sj = {�v : Cj(�v) = 1}. Compute
G =

∑
j′ π(Sj′). (Details in Algorithm 3 in Section 5.)

2 for i = 1 to Z = 4c4k4/ε2 do

3 Choose an index j with probability pj =
π(Sj)

G
.

4 Choose an assignment �v from Sj with probability
π(�v|Sj). (Details in Algorithm 4 in Section 6.)

5 Compute n(�v) = |{j′ : Cj′ (�v) = 1}|.

6 Let N ← N +
eq(�v)/bG

22mπ(�v)n(�v)
.

7 Choose an assignment �w with probability π(�w).
(Details in Algorithm 2 in Section 4.)

8 Let D ← D +
eq(�w)/bG

22mπ(�w)
.

9 end

10 return N̂ = 22
m

N/Z and D̂ = 22
m

D/Z .

Theorem 1 If π is a c-approximation to I�q for some constant
c, and step 1, 4 and 7 in Algorithm 1 take polynomial time,
then Algorithm 1 is an unbiased FPRAS for both N�q(F) and
D�q(F); and if we let the output of Algorithm 1 be N/D, then,
Algorithm 1 is an FPRAS for I�q(F).

Due to space constraints, proofs are omitted. A full version
with all proofs is available on the first author’s website.

For any security F ′ represented by a CNF formula, we can
first use De Mongan’s Law to compute its negation F , which
is in DNF. Then, we apply Algorithm 1 to compute an approx-
imation p̂ for I�q(F). Because I�q(F

′) + I�q(F) = 1 and with
a high probability |p̂ − I�q(F)| ≤ εI�q(F) ≤ ε, we have that
with a high probability |1− p̂− I�q(F

′)| < ε. This shows that
Algorithm 1 can be used to compute the prices of securities
represented by CNF formulas with additive error bounds.

4One of the anonymous reviewers insightfully pointed out that,
under the framework studied by Chen et al. [5], there are close con-
nections between our Algorithm 3 and the well-known belief prop-
agation algorithm [16], and between our Algorithm 4 and the back-
propagation phase of the belief propagation algorithm.

4 The Distribution Based on Pairwise Win

Rates between Teams

We now specify the distribution π used in Algorithm 1. For
any pair of teams Ti and Tj , we let h(Ti, Tj) denote the win
rate of Ti against Tj in the history, that is, the number of
matches where Ti beats Tj over the total number of matches

between them.5 By definition, h(Ti, Tj) + h(Tj, Ti) = 1.
h(·, ·) is called a pairwise win rate function.

Algorithm 2 randomly generates a valuation �v by using
h(·, ·). Therefore, it defines a distribution πh over all valu-
ations, which is used as the input π in Algorithm 1. Algo-
rithm 2 is also used in step 7 in Algorithm 1 to generate a
random valuation according to πh. The idea behind Algo-
rithm 2 is to keep track of the remaining teams and simulate
each match in the tournament using h(·, ·). This is done in a
up-down flavor (see Figure 1).

Algorithm 2: ValuationSampling

Input: h(·, ·).
Output: A randomly generated valuation �v.

1 For each i ≤ 2m, associate x0
i with Ti.

2 for j = 1 to m do

3 for i = 1 to 2m−j do
4 Let l (respectively, r) denote the team number

associated with x
j−1
2i−1 (respectively, x

j−1
2i).

5 With probability h(Tl, Tr) let x
j
i = 0 and

associate x
j
i with Tl; with probability h(Tr, Tl)

let x
j
i = 1 and associate x

j
i with Tr.

6 end

7 end

8 return the values of (x1
1,x

1
2, . . . ,x

m
1).

Since h(·, ·) is calculated from historical data, it is com-
mon knowledge to every agent. Therefore, it makes sense to
assume that h(Ti, Tj) is a reasonable approximation to the
agents’ belief about the probability that Ti beats Tj if they
meet in the current tournament. Of course there are many
other factors that might affect the agents’ belief. For exam-
ple, suppose in the previous round Ti beat a strong team and
Tj beat a weak team, then the agents’ belief about the prob-
ability that Ti beats Tj in the current tournament might be
smaller than h(Ti, Tj). However, such bias is usually small.
Therefore, we assume that πh is a not-too-bad approxima-
tion (that is, a c-approximation for some constant c) to I�q .
More importantly, as we will show later, πh is computation-
ally tractable for steps 1 and 4 in Algorithm 1.

Example 2 Suppose there are four teams. Let h(·, ·) be de-
fined as follows. h(T1, T2) = h(T3, T4) = 0.5, h(T3, T1) =
h(T4, T1) = 0.9, h(T3, T2) = h(T4, T2) = 0.3. In Algo-
rithm 2, we first sample the value of x1

1. The probability that
x
1
1 = 0 is h(T1, T2) = 0.5. Suppose the outcome is x1

1 = 0.
We then sample the value of x

1
2 using h(T3, T4), and sup-

pose that x1
2 = 1. Finally, we sample the value of x1

2 using

5In case of insufficient historical data, we can use relative
strength of the teams to estimate h(·, ·).

455

h(T1, T4) = 0.1, because T1 is the winner of x1
1 and T4 is

the winner of x1
2. Suppose the outcome is x

2
1 = 1. Then,

Algorithm 2 will output (011, 1
1
2, 1

2
1). �

5 Computing Marginal Probabilities

Let Y denote a subset of variables and let �vY denote a val-
uation of the variables in Y . In this section we propose a
polynomial-time algorithm (Algorithm 3) that computes any
marginal probability under πh. Algorithm 3 is used in step
1 of Algorithm 1 in the following way. For any j ≤ k, let
Y = {x : Cj contains x or ¬x}, and for any x ∈ Y , if Cj

contains x, then let �vY (x) = 1, if Cj contains ¬x, then let
�vY (x) = 0 (we assume that Cj does not contain both x and
¬x). We have that πh(Sj) = πh(�vY).

For any Y and �vY , we say that the value of a variable x
j
i

is consistent with �vY , if whenever x
j
i ∈ Y , x

j
i ’s value must

be the same as in �vY (if x
j
i �∈ Y , then its value is always

consistent with �vY).
Algorithm 3 is based on dynamic programming. For each

variable x
j
i , we compute a table that records the probabilities

for each team T that can reach x
j
i to actually win x

j
i , when

the values of all ancestors of x
j
i (including x

j
i) are consistent

with �vY . Let MP
j
i (T) denote such a probability for T at x

j
i .

Once we have MP
j−1
2i−1 and MP

j−1
2i , we can compute MP

j
i by

using h(·, ·) and �vY . In other words, MP
j
i ’s are computed in a

up-down flavor (see Figure 1). We note that for each variable
we will not compute a probability distribution conditioned on

�vY . That is,
∑

T MP
j
i (T) might be strictly smaller than 1.

For any j such that 1 ≤ j ≤ m and any i ≤ 2m−j , let

LG(xj
i) (respectively, RG(xj

i)) denote the set of teams in the

left (respectively, right) branch of the parents ofx
j
i . For exam-

ple, LG(x1
1) = {T1}, RG(x2

1) = {T3, T4}. For any i ≤ 2m,

let M0
i (Ti) = 1 and for any i′ �= i, let M0

i (Ti′) = 0. MP
j
i

will be updated according to the following rule.

Rule 1 For any 1 ≤ j ≤ m, any i ≤ 2m−j , and any team T ,

define M j
i (T) as follows.

(a) If T ∈ LG(xj
i) and either x

j
i �∈ Y , or �vY (x

j
i) = 0, then

let MP
j
i (T) =

∑
T ′∈RG(xj

i
) h(T, T

′)MP
j−1
2i−1(T)MP

j−1
2i (T ′).

That is, if it is not determined in �vY that the winner comes

from the right branch x
j−1
2i , then we count in the situations

where a team T from the left branch x
j−1
2i−1 (which happens

with probability MP
j−1
2i−1(T)) wins the match x

j
i . For each T

from the left branch, we enumerate all potential competitors
that come from the right branch.

(b) If T ∈ RG(xj
i) and either x

j
i �∈ Y , or �vY (x

j
i) = 1, then

let MP
j
i (T) =

∑
T ′∈LG(xj

i
) h(T, T

′)MP
j−1
2i−1(T

′)MP
j−1
2i (T).

(c) Otherwise let MP
j
i (T) = 0.

Proposition 1 Algorithm 3 computes the marginal probabil-
ity πh(�vY) in polynomial time.

Example 3 Suppose there are four teams and h(·, ·) is
defined the same as in Example 2. Suppose Y =
{x1

2,x
2
1} and �vY = (112, 1

2
1). Algorithm 3 computes

πh(�vY) as follows. In the first round Rule 1(a) applies to

Algorithm 3: CompMarginal

Input: h(·, ·), a valuation �vY of a set of variables Y .
Output: πh(�vY).

1 for j = 1 to m do

2 for i = 1 to 2m−j do

3 Compute MPj
i according to Rule 1.

4 end

5 end
6 return

∑
l MPm

1 (Tl).

MP1
1(T1), so that MP1

1(T1) = h(T1, T2)MP0
1(T1)MP0

2(T2) =
0.5; Rule 1(b) applies to MP1

1(T2), so that MP1
1(T2) =

h(T2, T1)MP0
2(T2)MP0

1(T1) = 0.5. Because x
1
2 ∈ Y and

�vY (x
1
2) = 1, Rule 1(c) applies to MP1

2(T3) and Rule 1(b) ap-

plies to MP1
2(T4), so that MP1

2(T3) = 0 and MP1
2(T4) = 0.5.

We note that MP1
2(T3) + MP1

2(T4) = 0.5 < 1.

Now we compute MP2
1. Because x

2
1 ∈ Y and

�vY (x
2
1) = 1, Rule 1(c) applies to MP2

1(T1) and MP2
1(T2),

and Rule 1(b) applies to MP2
1(T3) and MP2

1(T4). Therefore,

MP2
1(T1) = MP2

1(T2) = MP2
1(T3) = 0 and MP2

1(T4) =
h(T4, T1)MP1

2(T4)MP1
1(T1)+h(T4, T2)MP1

2(T4)MP1
1(T2) =

0.9× 0.5× 0.5+ 0.3× 0.5× 0.5 = 0.3. The output of Algo-
rithm 3 is 0 + 0 + 0 + 0.3 = 0.3.

On the other hand, πh(�vY) can be computed directly. We
have πh(x

1
1 = 0,x1

2 = 1,x2
1 = 1) = 0.5× 0.5× 0.9 = 9/40

and πh(x
1
1 = 1,x1

2 = 1,x2
1 = 1) = 0.5× 0.5 × 0.3 = 3/40.

Therefore, πh(�vY) = 12/40 = 0.3, which is the same as the
output of Algorithm 3. �

6 Sampling a Valuation from Sj

In this section we present an algorithm (Algorithm 4) that ran-
domly samples a valuation �v from Sj according to the condi-
tional probability πh(�v|Sj). This algorithm is used in step 4 in
Algorithm 1. Algorithm 4 samples the outcome in a bottom-
up flavor. Instead of sampling the value of each variable one
after another, our algorithm samples the winner at each vari-
able (i.e., match) sequentially. In the first step, we pin down
all variables in Y to be �vY , and sample the winner T ∗ for the
whole tournament (equivalently, for the last match x

m
1) pro-

portional to the marginal probability MPm
1 (T ∗) computed in

Algorithm 3 (we note that MPm
1 (T ∗)’s do not necessarily sum

up to 1). Then, we pin down x
m
1 and any other variables that

are necessary to make sure that T ∗ wins the tournament. For
example, without loss of generality let T ∗ = T1. We enforce

that xm
1 = x

m−1
1 = · · · = x

1
1 = 0. Suppose xm−1

2 �∈ Y . The

second step is to sample the winner T ′ for xm−1
2 , with a prob-

ability that is proportional to h(T1, T
′)MPm−1

2 (T ′). Gener-
ally, in each step we find an undetermined variable x that is
as close to the final round as possible, sample the winner T
for x, and then pin down the values of all variables that are
necessary for T to win at x. The algorithm terminates after
all variables in Xm are determined. Formally, the algorithm
is as follows.
Proposition 2 For any valuation �v that is consistent with �vY ,
Algorithm 4 runs in polynomial time and returns �v with prob-
ability πh(�v|�vY).

456

Algorithm 4: Sampling

Input: h(·, ·), a valuation �vY for a set of variables Y .
Output: A valuation �v with probability πh(�v|�vY).

1 For each j ≤ m and each i ≤ 2m−j , use Algorithm 3 to

compute MP
j
i .

2 Assign �vY to the variables in Y .
3 Sample the winner T ∗ for xm

1 , with a probability
proportional to MPm

1 (T ∗).
4 Assign values to x

m
1 and the smallest set of its ancestors

that are necessary for T ∗ to win at xm
1 .

5 while ∃ an unassigned variable do

6 Find an unassigned variable x
j
i with the largest j.

7 Sample the winner T for x
j
i , with a probability that is

proportional to h(T ′, T)MP
j
i (T), where T ′ is the

winner at x
j+1
�i/2�.

8 Assign values to x
j
i and the smallest set of its

ancestors that are necessary for T to win at x
j
i .

9 end
10 return the valuation.

7 Common Bidding Languages in DNF

Chen et al. have shown that their method can efficiently price
some popular securities, including “Team T wins game x”
(Theorem 3.1 [5]), and “Team T wins game x and Team T ′

wins game x
′, where there is an edge between x and x

′”
(Theorem 3.2 [5]). The next proposition provides a far-from-
complete list of popular securities that can be modeled by
DNF formulas of polynomial size, including the two types
of securities considered by Chen et al.

Proposition 3 The following types of securities can be mod-
eled by DNF formulas of polynomial size.
• Team T wins game x.
• Team T wins game x and Team T ′ wins game x′.
• Team T advances further than T ′.
• The champion is among {T, T ′, T ∗}.
• Team T will meet T ′ in the tournament.

Yahoo! operated a combinatorial prediction market game
called Predictalot for NCAA basketball (2010, 2011), the
FIFA World Cup (2010), and (under the name Predictopus)
the Cricket World Cup (2011). Many, but not all, of the pre-
dictions people placed can be represented by polynomial-size
DNF formulas. Some securities likely cannot be represented
compactly by DNF formulas, for example, “at least half of the
1st-round favorites will reach the 2nd round”.

8 Future Work

We plan to implement our algorithm in a real combinatorial
prediction market like Predictalot. There are many open ques-
tions. Is there a better distribution π (compared to πh) that can
be used in Algorithm 1? Can we extend our algorithm to other
types of combinatorial prediction markets? Can we design a
Monte-Carlo algorithm for pricing other types of securities?
Is there any computationally efficient way to update the prices
as the results of some matches come out?

Acknowledgements
Lirong Xia acknowledges a James B. Duke Fellowship and
Vincent Conitzer’s NSF CAREER 0953756 and IIS-0812113,
and an Alfred P. Sloan fellowship for support. We thank all
IJCAI-11 reviewers for helpful suggestions and comments,
especially the anonymous reviewer who pointed out the two
insightful connections discussed in footnote 4.

References
[1] Joyce E. Berg, Robert Forsythe, Forrest D. Nelson, and

Thomas A. Rietz. Results from a dozen years of election fu-
tures markets research. The Handbook of Experimental Eco-
nomics Results, 1:742–751, 2008.

[2] Joyce E. Berg, Forrest D. Nelson, and Thomas A. Rietz. Pre-
diction market accuracy in the long run. International Journal
of Forecasting, 24:285–300, 2008.

[3] Mark Chavira and Adnan Darwiche. On probabilistic inference
by weighted model counting. Artif. Intell., 172:772–799, 2008.

[4] Yiling Chen, Lance Fortnow, Nicolas Lambert, David M. Pen-
nock, and Jennifer Wortman. Complexity of combinatorial
market makers. In Proc. EC, pages 190–199, 2008.

[5] Yiling Chen, Sharad Goel, and David M. Pennock. Pricing
combinatorial markets for tournaments. In Proc. STOC, pages
305–314, 2008.

[6] Yiling Chen and David M. Pennock. A utility framework for
bounded-loss market makers. In Proc. UAI, pages 349–358,
2007.

[7] Yiling Chen and David M. Pennock. Designing markets for
prediction. AI Magazine, 31(4):42–52, 2010.

[8] Yiling Chen and Jennifer Wortman Vaughan. A new un-
derstanding of prediction markets via no-regret learning. In
Proc. EC, pages 189–198, 2010.

[9] Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Gener-
ating random solutions for constraint satisfaction problems. In
Proc. AAAI, pages 15–21, 2002.

[10] Lance Fortnow, Joe Kilian, David M. Pennock, and Michael P.
Wellman. Betting Boolean-style: A framework for trading in
securities based on logical formulas. Decision Support Sys-
tems, 39(1):87–104, 2004.

[11] Vibhav Gogate and Rina Dechter. Studies in solution sampling.
In Proc. AAAI, pages 271–276, 2008.

[12] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Near-
uniform sampling of combinatorial spaces using XOR con-
straints. In Proc. NIPS, pages 481–488, 2006.

[13] Robin Hanson. Combinatorial information market design. In-
formation Systems Frontiers, 5(1):107–119, 2003.

[14] Robin Hanson. Logarithmic market scoring rules for modular
combinatorial information aggregation. Journal of Prediction
Markets, 1:3–15, February 2007.

[15] Richard M. Karp, Michael Luby, and Neal Madras. Monte-
Carlo approximation algorithms for enumeration problems. J.
Algorithms, 10:429–448, 1989.

[16] Judea Pearl. Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann Publishers
Inc., 1988.

[17] Tian Sang, Paul Bearne, and Henry Kautz. Perform-
ing Bayesian inference by weighted model counting. In
Proc. AAAI, pages 475–481, 2005.

[18] Leslie Valiant. The complexity of enumeration and reliability
problems. SIAM J. Computing, 8(3):410–421, 1979.

[19] Vijay Vazirani. Approximation Algorithms. Springer Verlag,
2001.

[20] Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient
sampling: exploiting random walk strategies. In Proc. AAAI,
pages 670–676, 2004.

457

	IJCAI11
	Contents
	Index
	Help
	Terms
	IJCAI Website

